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Overview



Report addressed asteroid impact deflection and 
gravity tractor of a potentially hazardous NEO.
àLet’s look at the spacecraft 

radio tracking conclusions…

Sub-task 3
Looked at quantifying the ability to precisely determine the orbit of the asteroid by 
tracking a spacecraft in orbit or hovering near the asteroid using standard 
radiometric and optical navigation techniques. Done for:

1) Pre-impact, precise orbit determination with orbiter
2) Post-impact, determination of DV imparted by impactor using orbiter
3) Post-tractoring, determination of acceleration imparted by orbiter

Assumptions and simulated data:
Asteroid: 140 m in diameter, spherical
Doppler and range, 3 tracking passes per week
DDOR, 2 baseline pairs per week
Asteroid optical tracking, images taken 1 per week, and 4 per day from 2 
weeks pre-impact to 4 weeks post-impact
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B612 Study Report, 2008

Credits: Yeomans et al., 2008



Conclusions from spacecraft 
radiotracking…
The asteroid’s pre-impact trajectory 
was determined to a value of about 
400 km in the semi major axis of the 
b-plane uncertainty ellipse at the 
Earth encounter in 2049 (after 8 days 
of tracking).

Impact at 4.7 m/s +/- 1 cm/s

Following deflection, the asteroid’s 
orbit was determined to its pre-
impact levels after only one day of 
tracking.  

à After only one day of 
tracking, the semi major axes have 
been reduced from 2,000 and 
200,000 km to roughly 6 and 510 km. 
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Asteroid Ephemeris Error Improvement

Asteroid uncertainties mapped to the Earth b-plane in 
September 2046 (top) and September 2049 (bottom) 
following deflection, as a function of the number of 
tracking days (post-deflection impact). 

Credits: Yeomans et al., 2008
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Radio Science Analysis for the AIDA mission
Terminator Orbits
Binary Component Flybys



ESA-led AIM to launch in October 2020. 
NASA-led DART to arrive at Didymos in late 2022 and impact the moon at ~6 km/s. 
AIM would perform detailed before-and-after impact comparisons.

3/27/17 6

AIDA Mission Objectives

Credits: ESA



Determine measurability of Diydmos parameters and impact DV from DART

Uncertainty Assumptions
• Didymos system parameters and apriori uncertainties from AIDA reference 
document.
• Didymos ephemeris and apriori covariance from JPL SSD Alain Chamberlain.
• Didymoon/Didymain orbits integrated using initial conditions from Didymos system 
ephemerides simulated by JPL SSD Eugene Fahnestock.
• Harmonics apriori uncertainty assumption from Jay McMahon (LPSC 2016)
• Accounting for uncertainties on planetary ephemeris, DSN locations, media

Spacecraft desaturations
• Modeling spacecraft using desaturations (1x / 2 days) (assume use of reaction 
wheels for turns, balanced thrusters), and compared with a “clean” spacecraft.

Simulated Data
• Simulated radiometric measurements: 7 per week, 8 hr tracks
• Simulated optical measurements (13 deg field of view, 1 pic/12 hrs, alternating 
between main and moon every 6 hrs, equally generated landmarks)
• Pointing uncertainty not included
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Study Goals
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2km & 5km Terminator Orbits
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Didymoon Flyby at 300 m altitude
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Didymain Flyby at 1500 m altitude
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Asteroid GM Uncertainties vs Orbiting Altitudes, 
with/without Optical navigation
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Dydimos Ephemeris Uncertainties vs Orbiting 
Altitudes, with Optical navigation
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DART - Impact Observation from 50 km and 
100 km orbit platforms



Uncertainty Assumptions – already refined from pre-impact operations
• Apriori covariance on states, GMs, pole data using 2km terminator orbit case
• Accounting for uncertainties from planetary ephemeris, DSN locations, media

Spacecraft orbit maintenance
• From 50km and 100km orbiting platform, over 4, 12, and 31 days 
• Impulse maneuver every 4 days to stay within “box” for > 4 days cases
• Uncertainty on DART-induced DV and orbit maintenance impulses is 1 mm/s

Simulated Data
• Simulated radiometric measurements: 7 per week, 8 hr tracks
• Simulated optical measurements: Didymain landmarks and component centroids 
• Pointing uncertainty is not included

Parameters of Interest
• DV uncertainty in RTN frame: radial and transverse visible from pole observation 
platform
• Beta uncertainty: take DV uncertainty projected along surface normal at impact 
location, normalize by impact DV magnitude, obtained for “low”, “moderate”, “high” 
excitation (see Eugene Fahnestock study cases). 
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Spacecraft Observation Platform



3/27/17 15

50 km Standoff Orbit
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DV Uncertainties vs Time for 100km and 50km Orbiting 
Platforms, with Optical Navigation
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After 4 days… Dydimos Ephemeris Uncertainties vs 
Orbiting Altitudes, with Optical navigation
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After 12 days… Dydimos Ephemeris Uncertainties vs 
Orbiting Altitudes, with Optical navigation
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Conclusions

From the 2011 B612 report:
à The asteroid orbit can be determined to its pre-impact levels after only one day 

of tracking. 
à Further improved as more radio tracking and optical measurements are obtained.

From the AIDA case study:
à The GM of the main and moon asteroid can be determined to less than 1% for 

the main with orbit altitudes below 10 km, and to less than 5% for the moon with orbit 
altitudes below 4 km. 

à Didymos ephemeris errors reduce to sub-km with terminator orbits at altitudes 
below 4 km, and to km-level with hyperbolic flybys.

à After the DART impact, DV uncertainty < 0.05 mm/s can be obtained (in 
transverse direction from a pole observation) with orbiting platform at 50 km over a 
week. DV uncertainty < 0.1 mm/s with orbiting platform at 100 km over 30 days.

à Didymos ephemeris errors reduce to km-level and sub-km after 4 days and 12 
days from an orbiting platform at 50km, respectively. 


